direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C6×C23⋊C4, C24⋊4C12, (C2×D4)⋊5C12, (C6×D4)⋊17C4, (C23×C6)⋊2C4, (C22×C4)⋊4C12, C23⋊1(C2×C12), (C22×C12)⋊7C4, C24.11(C2×C6), (C22×D4).5C6, C22.10(C6×D4), C23.11(C3×D4), (C22×C6).157D4, C23.1(C22×C6), (C6×D4).282C22, (C22×C6).80C23, (C23×C6).10C22, C22.6(C22×C12), (C2×C4)⋊1(C2×C12), (C2×C12)⋊3(C2×C4), (D4×C2×C6).16C2, C22⋊C4⋊9(C2×C6), (C2×C22⋊C4)⋊4C6, (C6×C22⋊C4)⋊9C2, (C22×C6)⋊2(C2×C4), (C2×D4).40(C2×C6), (C2×C6).405(C2×D4), C2.12(C6×C22⋊C4), C6.100(C2×C22⋊C4), C22.2(C3×C22⋊C4), (C3×C22⋊C4)⋊45C22, (C2×C6).159(C22×C4), (C2×C6).135(C22⋊C4), SmallGroup(192,842)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C23 — C22×C6 — C3×C22⋊C4 — C3×C23⋊C4 — C6×C23⋊C4 |
Generators and relations for C6×C23⋊C4
G = < a,b,c,d,e | a6=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Subgroups: 434 in 210 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C23⋊C4, C2×C22⋊C4, C22×D4, C3×C22⋊C4, C3×C22⋊C4, C22×C12, C22×C12, C6×D4, C6×D4, C23×C6, C2×C23⋊C4, C3×C23⋊C4, C6×C22⋊C4, D4×C2×C6, C6×C23⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C23⋊C4, C2×C22⋊C4, C3×C22⋊C4, C22×C12, C6×D4, C2×C23⋊C4, C3×C23⋊C4, C6×C22⋊C4, C6×C23⋊C4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 33)(8 34)(9 35)(10 36)(11 31)(12 32)(13 30)(14 25)(15 26)(16 27)(17 28)(18 29)(37 48)(38 43)(39 44)(40 45)(41 46)(42 47)
(7 48)(8 43)(9 44)(10 45)(11 46)(12 47)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 48)(8 43)(9 44)(10 45)(11 46)(12 47)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 21 48 25)(8 22 43 26)(9 23 44 27)(10 24 45 28)(11 19 46 29)(12 20 47 30)(13 42)(14 37)(15 38)(16 39)(17 40)(18 41)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,33)(8,34)(9,35)(10,36)(11,31)(12,32)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,21,48,25)(8,22,43,26)(9,23,44,27)(10,24,45,28)(11,19,46,29)(12,20,47,30)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,33)(8,34)(9,35)(10,36)(11,31)(12,32)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,21,48,25)(8,22,43,26)(9,23,44,27)(10,24,45,28)(11,19,46,29)(12,20,47,30)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,33),(8,34),(9,35),(10,36),(11,31),(12,32),(13,30),(14,25),(15,26),(16,27),(17,28),(18,29),(37,48),(38,43),(39,44),(40,45),(41,46),(42,47)], [(7,48),(8,43),(9,44),(10,45),(11,46),(12,47),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,48),(8,43),(9,44),(10,45),(11,46),(12,47),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,21,48,25),(8,22,43,26),(9,23,44,27),(10,24,45,28),(11,19,46,29),(12,20,47,30),(13,42),(14,37),(15,38),(16,39),(17,40),(18,41)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 3A | 3B | 4A | ··· | 4J | 6A | ··· | 6F | 6G | ··· | 6R | 6S | 6T | 6U | 6V | 12A | ··· | 12T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | C12 | D4 | C3×D4 | C23⋊C4 | C3×C23⋊C4 |
kernel | C6×C23⋊C4 | C3×C23⋊C4 | C6×C22⋊C4 | D4×C2×C6 | C2×C23⋊C4 | C22×C12 | C6×D4 | C23×C6 | C23⋊C4 | C2×C22⋊C4 | C22×D4 | C22×C4 | C2×D4 | C24 | C22×C6 | C23 | C6 | C2 |
# reps | 1 | 4 | 2 | 1 | 2 | 2 | 4 | 2 | 8 | 4 | 2 | 4 | 8 | 4 | 4 | 8 | 2 | 4 |
Matrix representation of C6×C23⋊C4 ►in GL6(𝔽13)
10 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(13))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0] >;
C6×C23⋊C4 in GAP, Magma, Sage, TeX
C_6\times C_2^3\rtimes C_4
% in TeX
G:=Group("C6xC2^3:C4");
// GroupNames label
G:=SmallGroup(192,842);
// by ID
G=gap.SmallGroup(192,842);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,4204,3036]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations